Eur. Phys. J. B 28, 361-367 (2002)
DOI: 10.1140/epjb,/e2002-00239-1

THE EUROPEAN
PHYSICAL JOURNAL B

Scaling in large Prandtl number turbulent thermal convection

B. Dubrulle®*

CNRS, Groupe Instabilité et Turbulence, CEA/DSM/DRECAM/SPEC, 91191 Gif-sur-Yvette Cedex, France

Received 27 February 2002 / Received in final form 29 May 2002
Published online 31 July 2002 — (© EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2002

Abstract. We study the scaling properties of heat transfer Nu in turbulent thermal convection at large
Prandtl number Pr using a quasi-linear theory. We show that two regimes arise, depending on the Reynolds
number Re. At low Reynolds number, NuPr~/? and Re are a function of RaPr—%/2. At large Reynolds
number NuPr'/? and RePr are function only of RaPr?/? (within logarithmic corrections). In practice,
since Nu is always close to Ra'/3, this corresponds to a much weaker dependence of the heat transfer in
the Prandtl number at low Reynolds number than at large Reynolds number. This difference may solve
an existing controversy between measurements in SF¢ (large Re) and in alcohol/water (lower Re). We link
these regimes with a possible global bifurcation in the turbulent mean flow. We further show how a scaling
theory could be used to describe these two regimes through a single universal function. This function
presents a bimodal character for intermediate range of Reynolds number. We explain this bimodality in
term of two dissipation regimes, one in which fluctuation dominate, and one in which mean flow dominates.
Altogether, our results provide a six parameters fit of the curve Nu(Ra, Pr) which may be used to describe
all measurements at Pr > 0.7.

PACS. 47.27-i Turbulent flows, convection and heat transfer — 47.27.Eq Turbulence simulation and mod-

eling — 47.27.Te Convection and heat transfer

1 Motivation and objectives

In September 2001, a workshop on “high Rayleigh num-
ber convection” was held at Illmenau (Germany). Dur-
ing the course of this workshop, a controversy arose
about the scaling and magnitude of the heat transport,
in large Prandtl number experiments. Two groups, one
in Santa Barbara [1], and one in Hong Kong [2,3], re-
ported measurements performed in water and organic flu-
ids (alcohols) at Prandtl numbers ranging approximately
Pr = 4 to Pr = 1300 and in cell of aspect ratio unity.
In these experiments, the non-dimensional heat transfer
between the bottom and top, Nu, appears to depend only
weakly on the Prandtl number, and to increase with the
Rayleigh number Ra, like:

Nu = 0.3Ra"28pr=0028, (1)

A third group of people, located in Rehovot, reported mea-
surements performed with SFg gas, near critical point.
By varying the distance to critical point, one can vary
the Prandtl number between Pr = 1.4 up to Pr = 36,
with relatively small non-Boussinesq effects up to Ra =
105 [4]. The heat transfer measurements in these exper-
iments revealed a much stronger Prandtl number depen-
dence, and appeared to be about 1.5 larger in magnitude
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than in the water/alcohol experiments in the same range
of Rayleigh numbers:

Nu = 0.51Ra®2Pr=015, (2)

Since the aspect ratio in the SFg experiments was compa-
rable (0.72 vs. 1) to the water/alcohol experiments, there
was no clear explanation of the discrepancy between the
two type of measurements. Compressibility effects due to
the vicinity of the critical point were mentioned as a possi-
bility, even though simple estimates seem to rule out their
influence in the range of Rayleigh number explored [4].

Since then, the Rehovot group has improved its
method of determination of the Nusselt number, which
previously gave only precise estimate of relative changes,
not absolute ones. The improvement results in a better
determination of the prefactor of the law (2) which ap-
pears to be decreased by a factor 2 with respect to the old
measurements (Steinberg, private communication). This
solves the discrepancy in magnitude between the Nusselt
measurents in alcohol/water and in SF¢. But the discrep-
ancy in the Prandtl dependence still remains.

Clearly, in this type of controversy, it would be helpful
to rely on theoretical results to guide our intuition. The
water/alcohol experiments appear to be in good agree-
ment with a recent theory by Grossmann and Lohse [5,6],
which predicts a very weak decrease of the Nusselt number
with the Prandtl number, due to a saturation of the vis-
cous boundary layer (it increases with Pr). On the other
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hand, the SFg experiment is in excellent agreement with
a theory by Shraiman and Siggia [7], based on the exis-
tence of a turbulent boundary layer. Since both theories
are mutually excluding, they can however not be used to
solve the discrepancy. In a recent work [8-10], we have
developed a quasi-linear theory of turbulent convection,
which enables analytical predictions of the scaling laws of
convection, including logarithmic corrections. The SFg ex-
periment appeared to fit nicely into one scaling regime, in
which the energy dissipation is dominated by the fluctua-
tions, while the heat dissipation is dominated by the mean
flow. The theory of Shraiman and Siggia also appeared as
a special case of this theory, in which both the energy
and the temperature dissipation are dominated by mean
quantities. So there are actually two regimes which could
explain the SFg experiment. It is then natural to wonder
first which regime is the more suitable for explaining the
SFg and whether the quasi-linear theory can be used to
propose solutions to the water/alcohol-SF¢ controversy.
This is the purpose of the present letter.

2 The quasi-linear theory in short: ideas,
weaknesses, constraints

In this context, it is interesting to summarize the main
ideas behind the quasi-linear theory. This theory is first
used to compute analytically, from the Boussinesq equa-
tions, the mean and fluctuating velocity and heat pro-
file within the turbulent boundary layer as a function of
the Rayleigh and Prandtl numbers. Under the assumption
that the energy and temperature dissipation are controlled
by the turbulent boundary layer, these results can then
be used to evaluate them analytically as a function of the
Rayleigh and Prandtl number. Because this evaluation in-
volves vertical integration of the local dissipation over the
height of the turbulent boundary layer, the final result
also becomes a function of the turbulent boundary layer
scale. In the quasi-linear approximation, this scale can be
computed by assuming that the velocity or thermal fluc-
tuations are passively advected by the mean flow [7,9].
However, because this mean flow a priori originates from
the bulk (it is external to the turbulent boundary layer),
it cannot be analytically computed and has to be taken as
an external parameter. The number of degree of freedom
can be greatly reduced if one assumes an algebraic pro-
file U = z¢ for this mean flow. Indeed, by matching this
mean flow with the analytic expression within the bound-
ary layer, the parameter ¢ becomes the only free relevant
parameter of the problem. In [10], we used velocity pro-
files given by numerical simulations by Kerr [11,12] and
Verzicco and Camussi [13] to postulate that for Pr < 0.7,
the parameter ¢ = 0, while for Pr > 0.7, its value is
€ = —1/2. This difference then provides a natural explana-
tion of the difference between low and large Prandtl num-
ber measurements. Also, because bulk circulation can be
severely affected by the geometry of the container (via the
aspect ratio), it introduces a non-trivial dependence in the
geometry which is difficult to quantify. In this regard, it
is a weak point of the theory.
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On the other hand, we show below that the theory
offers possibilities to connect different parameters of the
convective cell independently of the bulk circulation, and
depending only on the nature of the process which drives
the dissipation (i.e. whether it is the mean flow or the
fluctuations). Also, the hypothesis about the bulk flow
contains several possibilities of direct check of the theory,
via comparison between boundary layers length scales, and
velocity profiles. Indeed, it can be shown [10] that the
exponent of the velocity profile and the length scale of the
boundary layers are related through:

1 1 3(€)/(2+e€)
Appr = Prel@+e,~(1+0/@+0 <7 n _> ,
InAprr  f
(1+e)/(2+e€) d(e)/(2+e)
P 1 1
ABLV = =L —— + = -3
Ur InAprv  f

Here, u; = /—v90,U, is the friction velocity, and d(e)
is equal to 1 if ¢ = 0 and zero elsewhere. All quantities
have been non-dimensionalized by the vertical gap and
the thermal diffusivity. The subscript T stands for ther-
mal, and V stands for velocity boundary layer. The de-
pendence of € in Agppr and Appy has been omitted for
simpler notations. Also, the logarithmic and constant ve-
locity regime have been lumped into the single notation
UN\) ~u,/(1/In X+ 1/f) which patches the two consec-
utive characteristic behaviors. Note that in these units,
ur/Pr = Re,, the Reynolds number based on the friction
velocity!. Equation (3) then encompasses well-known re-

lations. For ¢ = 0, one finds Agry ~ Re;1/2, like in a
typical (logarithmic, i.e. ¢ = 0) boundary layer. For e = 1,
like in a laminar layer, one finds Agpy ~ Re:Q/ 3 This is
the scaling originally proposed by Shraiman and Siggia [7].

3 Application to large Prandtl number
convection

3.1 Reynolds number

What would be the situation in large Prandtl number con-
vection? Because v > 1, it can be expected that small-
scale temperature fluctuations, if any, are mainly affected
by the laminar part of the velocity field. Applying (3) with
€ = 1, one then expect that the thermal boundary layer
scales like Aprppr ~ Pr1/3u;2/3. If the thermal fluctua-
tions are so weak that only the mean temperature domi-
nates the dissipation, then Agpr ~ 1/Nu [10], fixing the
link between Re, and Nu as:

Re, ~ Nu®/?pr=1/2, (4)

These laws are quite general, and independent of the shape
of the velocity in the bulk region. We thus expect them

! The subscript * has been added to differentiate this
Reynolds number from the Reynolds number Re based on the
large scale circulation, which will be introduced afterwards,
and which is usually used in the scaling predictions.
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to be universal laws of the large Prandtl number regime.
So, is it satisfied by the available measurements in both
water/alcohol and SFg?

In the SFg case, there are no direct measurements
available of the friction velocity Reynolds number Re,. In-
stead, Ashkenazi and Steinberg [4] provide measurements
of a Reynolds number based on the peak frequency f, from
the velocity power spectra Re = 4f,L?/v. It can be fit-
ted by a power-law form Re = 2.6 Rq?-43+0:02 pj-—0.74£0.02,
Comparing the power-law form of Nu and Re, one then
sees that the law (4) is very well satisfied provided Re ~
Re,, as already stressed in [4].

In the alcohol case, the Hong-Kong group measured
Nu = Ra®?™Pr=9928 QOther direct measurements con-
cern not the friction Reynolds number, but the large scale
Reynolds number Re. Its variation with Pr and Ra has
been summarized by the Hong Kong group as: Re =
1.09Ra®43 Pr=0-76 [3]. Interestingly enough, this variation
is very similar to the variation deduced in SFg (with a
smaller prefactor, resulting in smaller Reynolds numbers).
However, given the very weak dependence of Nu with
Pr, this measurements is clearly incompatible with (4),
which shows that in the alcohol case, either the equal-
ity Re ~ Re, does not hold, or/and the general law (4)
is violated. In that respect, it is interesting to note that
a direct measurements of Re, performed by the same
group, in a water experiment at Pr = 7 for Ra between
107 to 10! [14] provides additional support of the viola-
tions of this laws. Indeed, they found Re ~ Ra’->, while
Re, ~ Ra%33, closer to Re, ~ Nu ~ Re?/3 than to (4).
These interesting new scalings are reminiscent of measure-
ments performed on the r.m.s. vertical velocity fluctua-
tions by the Rehovot group, which indicate that the corre-
sponding Reynolds number obeys a scaling transition from
Ra®43+0.02 4t Pr = 27 45 and 93, to a scaling Ra’3* at
Pr =190 [15].

The alcohol measurements show that our initial naive
expectation gathered in (4) has to be refined. For this, let
us come back to the main hypothesis governing (4). It is
based on the idea that the thermal boundary layer is de-
termined by the balance between the large scale advection
of temperature fluctuations U060 and the heat dissipation
0%0 ~ ONu~2. Within the boundary layer, the flow is lam-
inar, oriented in the longitudinal direction and obeys the
friction law U = PrRe?z, where z is the vertical coor-
dinate [10]. To obtain a “typical” velocity advection, one
then sets z = A\grr = Pr‘l/g’Re;Q/?’ to get ReiPr =
Nu3. This argument does not take into account the con-
straint that the typical size of the boundary layer cannot
increase beyond the size of the box [6]. This effect is ob-
tained when the whole cell is laminar, i.e. as the Reynolds
number decreases. To take this into account, we may then
change our estimate into U = PrRe2/(A + Prl/?’Ref/B),
resulting into the more general law:

Re,
\/1 4 coPri/3Re3

~ Nu
T prl/2?

(5)
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Fig. 1. Reynolds number versus Nusselt number in the alcohol
experiment [2]). The symbols are the experimental measure-
ments. The line is the fit predicted by the model (Eq. (6) with
c¢1 =7 and Re. = 17).

where ¢ is a constant depending a priori on the aspect ra-
tio. Decreasing Re, (e.g. by increasing Pr as in the exper-
iment of Ashkenazi and Steinberg), one observes a tran-
sition from Re, ~ Nu®2Pr=1/2 (i.e. the naive law (4))
to Rey ~ NuPr—1/2.

Large scale circulations are easier to measure than fric-
tion velocities. Its is therefore interesting to connect Re
and Re, to be able to exploit and verify (5). For this,
we match the large scale circulation velocity RePr to the
velocity vy, at the top of the boundary layer. At large
Reynolds number, the boundary layer is turbulent and
vpr = Re.Pr = RePr (within logarithmic corrections).
At smaller Reynolds number, the boundary layer is lami-
nar and vgy = Ref/\BLT. The link between Re and Re,
then depends on the shape of the velocity in the bulk flow
(through the value of €). However, we may note that this
length-scale is also subject to the condition that it can-
not increase beyond the size of the box [6] (a situation
occurring at very low Reynolds numbers). This remarks
allows us to build a general law resulting from a patching
between the large Reynolds number case and the very low
Reynolds number case as:

Re?

e = O Re JRew (©)
where ¢ is a non-universal constant and Re. is a criti-
cal Reynolds number. A rough estimate of this two pa-
rameters can be made using the alcohol data of Xia and
collaborators. The available measurements unfortunately
only concern Nu and Re as a function of Ra and Pr.
However, in this low Reynolds number case, we expect
R. ~ NuPr—'/2. Using this, we may then find ¢; and
Re, by a two parameter fit of Re versus NuPr~/2. Fig-
ure 1 shows a comparison of the measured Re and the
fit using (6) with ¢; = 7, Re. = 17. The agreement is
quite satisfactory. A further test of this fit can be made
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Pr < 10). The symbols are the model prediction d, = 1/(1 +
Re/17). The line is the fit 6, = Ra™°'® Pr®2* proposed by [2].

by comparing the effective boundary layer length scale
AgLv = Re/Re? = 1/(1 + Re./Re.) with the direct mea-
surement of Xian and Xia [3,14] in water (Pr = 7) and
alcohol, giving Apry ~ Ra~%10Pr%24 One sees in Fig-
ure 2 that the agreement is satisfactory. Finally, one can
invert (6) to obtain Re. as a function of Re in the SFg
experiment, using the values of the parameters calibrated
from the alcohol experiment. The results is shown in Fig-
ure 3. It indeed give Re ~ Re,, as expected in this large
Reynolds number case.

The combination of (6) and (5) predicts that, for a
given (large) Pr, large Reynolds number leads to Re. =
Re = Nu??Pr=1/2, while at lower Reynolds number,
Re = Re? = Nu?/Pr. In between, there is a transi-
tional regime in which Re varies smoothly with Re,. For
the range of Reynolds numbers explored by the Hong-
Kong group, we checked that this corresponds to an ap-
parent scaling behavior Re = Rez/?’ = Nu3/2Pr=3/% The
first case is representative of the data by Ashkenazi and
Steinberg, while the second is representative of the data
by Xia and collaborators, and Ahlers and collaborators.
It seems therefore that we have identified a possible cause
of discrepancy between the two groups: the difference in
magnitude in the Reynolds number, resulting in a different
regime explored. This difference of Reynolds number, ob-
served in experiments with similar aspect ratios, Prandtl
numbers and Rayleigh numbers is surprising at first sight.
A first explanation is that compressibility effects do play
a role. A second explanation is that for this range of pa-
rameters, there are two possible solutions, with distinct
transport properties (leading to different large-scale circu-
lations and different Nusselt numbers). Note that a similar
phenomenon has recently be observed in the flow between
two coaxial rotating cylinders (the von Karman flow). In
a certain range of Reynolds number, the mean compo-
nent of the turbulent flow undergoes a global bifurcation
with three distinct flow configurations, characterized by
different transport properties, and subject to a strong hys-
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Fig. 3. Friction Reynolds number in the SFs experiment. The
symbols is the estimated friction Reynolds number derived us-
ing the theoretical formula (Eq. (6) with ¢; = 7 and Re. = 17).
The line is a fit Re.« ~ Re, a behavior predicted by the theory.

teresis [16]. Is one of these two explanations sufficient to
explain the difference in Prandtl number dependence ob-
served? To answer this question, we now focused on the
second ingredient of [5,7,10]: the energy dissipation, en-
abling to link Re, and Ra and Nu.

3.2 Dissipation

In [10], we have shown that the contribution to the en-
ergy dissipation scales like uf_)\BLV/Pr = P7"3Ref§)\BLV
for a laminar mean flow, u2 = Pr3Re3 for a tur-
bulent mean flow (larger Reynolds number), and like
(PrNu)3/2Ra'ln\gry /A%, for fluctuations. The first
two contributions can be patched together as a function
of the Reynolds number in a way similar to what we did
for the Reynolds number. Summing the contributions of
the mean flow and of the fluctuations (in a way similar to
a procedure adopted by Grossmann and Lohse [5,6]) and
recalling that this energy dissipation equals PrRa(Nu—1)
[7], we obtain in this framework a general relation linking
Re, and the other parameters:

Re?

*

1+ Re./Re.
+ c2(PrNu)*?Ra'*InAprv /AgLy,  (7)

PrRa(Nu —1) = ¢, Pr?

where ¢; and ¢y are (a priori non universal) constants.
Using (5), this relation can also be written in a more illu-
minating form as:

Ra
Pr3/2

Nu o1+ coPr1/3Rez/3
P2 T 1 1 Re, /Re.
Nul/2 Ral/?

2 pi7T pyast

This relation can be used to determine interesting scal-

ing properties independent of the bulk flows or of the ge-
ometry. Indeed, we note that Appy is a function of Re,

ALy /Npry. (8)
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(see (3)). Further, we see from (5) that at low Reynolds
number Re, is a function only of NV uPr=1/2_ Consider-
ing (8) at low Reynolds, this means that in this regime
NuPr—/2 and Re are function only of RaPr—3/2. This
conclusion is independent of the fact that the dissipation
is dominated by the mean flow or by the fluctuations. In
practice, since Nu is close to Ra'/3 and Re close to Ra'/?,
this corresponds to a very weak dependence of Nu with
Pr, and a dependence Pr—%7 for Re.

At large Reynolds number, Re, is a function of
NuPr=Y/3 and ALy = Rel/ [10]. Inserting this into (8),
we see that at large Reynolds number, Re,Pr is a func-
tion only of RaPr~'/3 (within logarithmic corrections), or
equivalently NuPr'/3 is a function only of RaPr?/3. For
Nu and Re close to a Ra'/3 and Ra'/? dependence, this
means a decrease of Nu like Pr~/9 (within logarithmic
corrections) and of Re like Pr=2/3. The decrease in Nu in
that regime is therefore stronger than in the low Reynolds
number regime, and qualitatively explains the difference
between the experiments in SFg and in alcohol /water. For
a quantitative agreement, one would need to evaluate the
constants ¢y, ...co appearing in (8) and (5). One possibility
would be to perform a non-linear fit of the experimental
data points, like [6]. In the sequel, we would like to explore
another possibility, based on a collapse method inspired
from finite size scaling in statistical mechanics.

3.3 A scaling approach

Equation (8), valid in both the large and low Reynolds
number regime, provides an interesting implicit equation

for the variable y = /Ra/(NuPr):

+ coPrl/?’Rei/3
1+ Re./Re.

1
y? = ¢ Re? + coylndpry /A%y, (9)
The function y(R., Pr) can be found once the functional
shape for Agpy is provided. In the sequel, we shall adopt

Ak, =1+ csRY?,

(10)
patching between the large Reynolds number case, and
the saturation expected at very low Reynolds number.
Our goal is now to determine the constants ci, co, c3
and Re, from the available data. For this, we remark that
as P — 0o, Re, — 0 and the asymptotic behavior of y is:

y® = cRe?, Pr — oo. (11)

Note that given (4), this corresponds to Nu ~ Ra'/3
a limiting law also found by [6]. In addition, experimen-
tal data indicate that in the range of parameters usually
explored, the behavior of Nu with Ra and Pr follows ap-
proximate power laws. This suggests that it should be pos-
sible to approximate the behavior of y at large but finite
Prandtl number via a scaling shape (reminiscent of finite
size scaling in statistical mechanics):

y* = c1Re?F(Re, Pr®), (12)
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Fig. 4. The universal scaling function. Best collapse of the
data in alcohol [2], in water [1] and in SFg [4], obtained by
plotting v RaPr94Nu~=1 as a function of Re.Pr®". Note the
bimodal regime appearing in intermediate range of Re.Pr’".

where « is a scaling exponent (equivalent to a critical ex-
ponent) and F' is a (universal) scaling function. In this
approximation, the two parameters (o and F') can be
found experimentally from a collapse procedure on the
data taken at different Pr and Re,. This procedure is de-
scribed below. We stress that since the scaling form is not
exactly satisfied by the theoretical formula (8), it will only
provide an approximate experimental verification of (9).
However, since this method uses data in different experi-
mental set ups (different Pr and Re.), it is less liable to
systematic experimental errors and thus, provides a more
robust estimate of the constants ¢y, ...cs than via a direct
fit of the data. In addition, it provides a strong indepen-
dent test of the theoretical formula (9) since it does not
use its functional shape a priori.

3.4 A collapse method

In recent convection experiments, the quantity Re, is usu-
ally not directly measured and we have to use only an esti-
mate of it, based on (4). To minimize the error introduced
by this procedure, we may rewrite (11) as:

yPr® = G(Re.Pr®), (13)
with G(z) = y/c122F(x). The determination of o and G
is then made by trial and error, plotting yPr® as a
function of Re.Pr®, and choosing a of that all curves,
corresponding to different measurements at different Pr
and Re, collapse onto a single curve. The resulting curve
is the scaling function G. Figure 4 presents the best
collapse obtained with a = 0.7 for the data collected
by the groups of Ahlers (Santa Barbara), Xia (Hong-
Kong) and Steinberg (Rehovot)? In the first two cases,

/Nu?/Pr. In the third case, we used

2 We thank them warmly for making these data available
to us.

we used Re, =
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Re, = 0.17\/Nu3/Pr. Interestingly enough, the scaling
function seems to possess two branches at intermediate
Reynolds number (one extending the Ahlers data, the
other one extending the Steinberg data). Note that among
the data of Steinberg and his group, part of the data do
fall onto the lowest branch corresponding to the Ahlers
data. To check whether this is an artefact of our method,
or whether it corresponds to a real physical process (like
bimodality of the Nusselt numbers, discussed in [17,18],
we ran an additional check. We present in Figure 5 the
collapse obtained when the data of Chavanne et al. [17]
have been included, with the Reynolds number estimated
as Re, = y/Nu2/Pr. As can be seen, the universal scaling
function seems also to describe these data. Moreover, the
range where our bimodality was detected appears to coin-
cide with the bimodality range of Chavanne et al. Such a
bi-modality could arise for example from a global bifurca-
tion of the turbulent mean flow, like in the von Karman
experiment (see Sect. 3.1)

3.5 Fits and consistency check

This bimodality can be reproduced within the theoretical
model developed in Section 3.2. In this model, we showed
that the dissipation is the sum of two contribution: one
from the mean flow (term proportional to ¢1), and one
from the fluctuations (term proportional to cz). We show
on Figure 6 that the upper branch of the universal function
is well fitted by a “mean flow contribution”:

1+ 49.5622/3
Ymf = \/4-619524_736, x = Re,Pro7.

1+ /600 (14)

The “lower branch”, on the other hand, is well fitted by a
“fluctuation contribution”:

ys = 0.55(1 + 3021/3)2 In (0.012 (1 + 3Ox1/3)) . (15)
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by a “fluctuation contribution” formula (15), (dotted line).
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Ra = 10"% (squares). The line are the theoretical predictions,
using the fit (14).

The two corresponding regimes (fluctuation or mean flow
dominated) seem to be mutually excluding, explaining the
bimodality. We do not have an explanation for this. The
quality of the fit can be checked a posteriori by solv-
ing simultaneously (15) or (14) and (4) for a given Ra
and Pr, to find Nu(Ra, Pr). This consistency check is
shown in Figures 7 and 8 for the data of Ahlers, Xia and
Steinberg. Overall, the quality of the fit is good. We ex-
pect improvement to be gained once direct measurements
of Re, will be available.

4 Summary
We have shown that a discrepancy between heat flux

in alcohol/water and in SFg, at large Prandtl numbers,
could be explained by a Reynolds number effect and the
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existence of two different regimes, induced by a global bi-
furcation in the mean flow. We further showed how a scal-
ing theory could be used to describe these two regimes
through a single universal function. This function presents
a bimodal character for intermediate range of Reynolds
number. We explained this bimodality in term of two dis-
sipation regimes, one in which fluctuation dominate, and
one in which mean flow dominates. Altogether, our re-
sults provide a six parameters fit of the curve Nu(Ra, Pr)
which may be use to describe all measurements at Pr >
0.7. This is one more parameter than the theory recently
developed by Grossmann and Lohse [6], but it also fits
the data by Steinberg and it may lead to more precise
estimates, as the fit is done simultaneously over different
experiments.
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This work would not have been possible without the help of
Victor Steinberg, Guenter Ahlers and Ke-Quing Xia who made
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